Multi-secretary problem with many types

Omar Besbes (ob2105@columbia.edu), Yash Kanoria (ykanoria@gmail.com) and Akshit Kumar (ak4599@columbia.edu)

Columbia Business School

Multi-secretary Problem

Given a hiring budget B and horizon T, choose the top B secretaries based on their realized abilities.

Offline Problem: Can see the entire future.

Online Problem: Non-anticipating.

Common Heuristic

OPT:

\[
\max_{x_1, \ldots, x_T} \sum_{t=1}^T \theta_t x_t \quad \text{s.t.} \quad \sum_{t=1}^T x_t \leq B, x_t \in \{0, 1\}
\]

Difficulty: Online algorithm does not know the future i.e does not know all the θ_t in advance.

Certainty Equivalent Principle

Replace the stochastic quantities by their expectations and solve the optimisation problem and use the solution.

For uniform distribution, CE is a **threshold** policy.

Conservatism wrt Gaps

Conservatism Principle

If the CE threshold is close to a gap, use the gap as a threshold.

Failure of CE Policy For Many Types w/ Gaps i.e CE incurs large regret

For the CE policy, there exists a distribution F such that $\text{Regret}(B, T; \text{CE}) = \Theta(\sqrt{T})$.

Universal Lower Bound i.e the best any online policy can do

Consider any $\beta \in [0, \infty)$ and $\varepsilon_0 \leq 1/2$. Then there exists a distribution F_{β, ε_0} and a budget B such that $\text{Regret}(B, T; \pi) = \Omega(T^{2/4 - 1/2}1\{\beta > 0\} + \log T \cdot 1\{\beta = 0\})$

CwG Policy is near-optimal

For any $\beta \in [0, \infty)$ and $\varepsilon_0 \in [0, 1]$, suppose the distribution F with associated gaps is (β, ε_0)-clustered. Then for all $T \in \mathbb{N}$ and for all $B \in [T]$, the regret of our CwG policy scales as

\[
\text{Regret}(B, T; \text{CwG}) = O\left(T^{1/2 - 1/2}1\{\beta > 0\} + (\log T)^2 \cdot 1\{\beta = 0\}\right)
\]

Corollary: If the distribution has a (small) discrete support, $\text{Regret}(B, T; \text{CwG}) \leq C\sqrt{\log(1/\varepsilon_0)}/\varepsilon_0$

Numerical Simulations

Contributions

- **Analytical:** We introduce the class of (β, ε_0)-clustered distributions which subsume previously considered distributions. Identify β as a key driver of the regret scaling. β also captures the hardness of the problem.
- **Algorithmic:** Devise a new algorithmic principle called Conservatism wrt Gaps to deal with distributions which have gaps and achieve near optimal performance.
- **Extensions:** Our results also extend to the setting with many small types which are relevant to other NRM problems like order fulfillment.

References

