A simple model

- Continuous time, stationary and non-atomic supply and demand
- Destinations: \(D = \{1, 2, \ldots, D\} \)
- Arrival rate of riders to destination \(i \in D \)
- Riders’ patience level: \(P > 0 \), a rider will cancel trip request after \(P \) driver declines
- Arrival rate of drivers: \(\lambda \), Opportunity cost of driver’s time: \(c \)
- Net earnings from a trip to location \(i \in D \): Assume \(w_1 > w_2 > \cdots > w_{D} > 0 \)

EQUILIBRIUM OUTCOME UNDER STRICT FIFO

- Driver at the head of the queue: accept only trips to location 1 (i.e. highest earning trips). First position in the queue willing to accept location 1 trips: \(N_1 = 0 \).
- In comparison to location 2, a driver is willing to wait for an additional \(r_{21} \) periods for a trip to location 1. We know \(w_1 - r_{21} c = w_2 \Rightarrow r_{21} = (w_1 - w_2)/c \).
- Little’s Law: first position willing to accept location 2 trips \(N_2 = \lambda/\mu \).
- Can similarly find the first position \(N_i \) where driver is willing to go to location \(i \geq 3 \).
- With rider patience level \(P \), a location 3 trip (offered to drivers starting from the head of the queue under strict FIFO) is canceled by the rider after \(P \) declines.
- All trips to location \(i \) with \(N_i > P \) are unfulfilled—poor revenue and throughput.

THE DIRECT FIFO MECHANISM

Direct FIFO. Dispatch location \(i \) trips starting from the \(N_i^{th} \) position in the queue.

Theorem. It is a subgame-perfect equilibrium (SPE) for drivers to accept all dispatches from direct FIFO. The equilibrium outcome is ex-post envy-free.

Discussion. The option to skip the rest of the line incentivizes drivers further from the head of the queue to accept lower earning trips.

THE RANDOMIZED FIFO MECHANISM

A randomized FIFO mechanism is specified by \(P \) ‘bins’. A trip is first dispatched to a driver in the first bin \([b_0, b_1) \) uniformly at random. If declined for \(b_{k-1} \rightarrow b_k \), then for the \(b_k \) time a trip request is dispatched, select a random driver from \([b_k, b_{k+1}) \).

Theorem. Randomized FIFO achieves the second best in Nash equilibrium.

Discussion. When drivers are straightforward, drivers closer to the head of the queue are prioritized for trips to any destination—fair, and robust to idiosyncratic preferences.

- Randomization increases the waiting times for the next dispatch (vs. the driver at the head of the queue under direct FIFO), raising the costs of cherry-picking.
- Drivers who have waited longer in the queue (i.e. earlier bins) will accept higher earning trips → small variance/uncertainty in drivers’ net payoffs.

SIMULATION RESULTS

- Data from the City of Chicago
- Ridesharing trips originating from Chicago O’Hare, Nov. 2018 - Mar. 2020
- A total of around 800 destinations (census tracts in Chicago)

The first best. Drivers are dispatched upon arrival to locations in dec. order of \(w_i \).

Varying arrival rate of drivers \(\lambda \)

Total rider arrival rate: 12 per min; Assuming rider patience \(P = 12 \)

Varying rider patience level \(P \)

Fixing rider arrival rate at 12 per min, and driver arrival rate at 10 per min

HETEROGENEOUS EARNINGS & IMPATIENT RIDERS

- Loss of reliability, revenue and trip throughput under FIFO dispatching
- Heterogeneity in earnings by destination: long trips pay substantially more
- Drivers who have waited longer in the queue (i.e. in earlier bins) will accept higher earning trips
- Some trips are necessarily more lucrative than the others
- Difficult to reduce earnings from long trips due to minimum time/distance rates
- Suboptimal to increase fares of short trips to match the earnings from long trips

This work: align incentives and reduce earning inequity using *waiting times*, when we do not have the power to tell drivers what to do, or the full flexibility to set prices.